Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
1.
PLoS Pathog ; 17(11): e1010039, 2021 11.
Article in English | MEDLINE | ID: mdl-34748613

ABSTRACT

Six ebolavirus species are reported to date, including human pathogens Bundibugyo virus (BDBV), Ebola virus (EBOV), Sudan virus (SUDV), and Taï Forest virus (TAFV); non-human pathogen Reston virus (RESTV); and the plausible Bombali virus (BOMV). Since there are differences in the disease severity caused by different species, species identification and viral burden quantification are critical for treating infected patients timely and effectively. Here we developed an immunoprecipitation-coupled mass spectrometry (IP-MS) assay for VP40 antigen detection and quantification. We carefully selected two regions of VP40, designated as peptide 8 and peptide12 from the protein sequence that showed minor variations among Ebolavirus species through MS analysis of tryptic peptides and antigenicity prediction based on available bioinformatic tools, and generated high-quality capture antibodies pan-specific for these variant peptides. We applied this assay to human plasma spiked with recombinant VP40 protein from EBOV, SUDV, and BDBV and virus-like particles (VLP), as well as EBOV infected NHP plasma. Sequence substitutions between EBOV and SUDV, the two species with highest lethality, produced affinity variations of 2.6-fold for p8 and 19-fold for p12. The proposed IP-MS assay differentiates four of the six known EBV species in one assay, through a combination of p8 and p12 data. The IP-MS assay limit of detection (LOD) using multiple reaction monitoring (MRM) as signal readout was determined to be 28 ng/mL and 7 ng/mL for EBOV and SUDV respectively, equivalent to ~1.625-6.5×105 Geq/mL, and comparable to the LOD of lateral flow immunoassays currently used for Ebola surveillance. The two peptides of the IP-MS assay were also identified by their tandem MS spectra using a miniature MALDI-TOF MS instrument, greatly increasing the feasibility of high specificity assay in a decentralized laboratory.


Subject(s)
Ebolavirus/immunology , Hemorrhagic Fever, Ebola/diagnosis , Peptide Fragments/immunology , Recombinant Proteins/immunology , Viral Matrix Proteins/immunology , Animals , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Humans , Macaca mulatta , Species Specificity
2.
Sci Rep ; 11(1): 19458, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34593911

ABSTRACT

Efficacious therapeutics for Ebola virus disease are in great demand. Ebola virus infections mediated by mucosal exposure, and aerosolization in particular, present a novel challenge due to nontypical massive early infection of respiratory lymphoid tissues. We performed a randomized and blinded study to compare outcomes from vehicle-treated and remdesivir-treated rhesus monkeys in a lethal model of infection resulting from aerosolized Ebola virus exposure. Remdesivir treatment initiated 4 days after exposure was associated with a significant survival benefit, significant reduction in serum viral titer, and improvements in clinical pathology biomarker levels and lung histology compared to vehicle treatment. These observations indicate that remdesivir may have value in countering aerosol-induced Ebola virus disease.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Ebolavirus/drug effects , Hemorrhagic Fever, Ebola/drug therapy , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/pharmacology , Administration, Intravenous , Aerosols , Alanine/administration & dosage , Alanine/pharmacology , Animals , Antiviral Agents/administration & dosage , Disease Models, Animal , Female , Hemorrhagic Fever, Ebola/blood , Kaplan-Meier Estimate , Liver/drug effects , Liver/virology , Lung/pathology , Lung/virology , Lymph Nodes/drug effects , Lymph Nodes/pathology , Lymph Nodes/virology , Macaca mulatta , Male , Random Allocation , Systemic Inflammatory Response Syndrome/drug therapy , Systemic Inflammatory Response Syndrome/virology , Viral Load/drug effects , Viremia/drug therapy
3.
PLoS Negl Trop Dis ; 15(8): e0009566, 2021 08.
Article in English | MEDLINE | ID: mdl-34383755

ABSTRACT

BACKGROUND: Ebola virus (EBOV) is a zoonotic filovirus spread through exposure to infected bodily fluids of a human or animal. Though EBOV is capable of causing severe disease, referred to as Ebola Virus Disease (EVD), individuals who have never been diagnosed with confirmed, probable or suspected EVD can have detectable EBOV antigen-specific antibodies in their blood. This study aims to identify risk factors associated with detectable antibody levels in the absence of an EVD diagnosis. METHODOLOGY: Data was collected from September 2015 to August 2017 from 1,366 consenting individuals across four study sites in the DRC (Boende, Kabondo-Dianda, Kikwit, and Yambuku). Seroreactivity was determined to EBOV GP IgG using Zaire Ebola Virus Glycoprotein (EBOV GP antigen) ELISA kits (Alpha Diagnostic International, Inc.) in Kinshasa, DRC; any result above 4.7 units/mL was considered seroreactive. Among the respondents, 113 (8.3%) were considered seroreactive. Several zoonotic exposures were associated with EBOV seroreactivity after controlling for age, sex, healthcare worker status, location, and history of contact with an EVD case, namely: ever having contact with bats, ever having contact with rodents, and ever eating non-human primate meat. Contact with monkeys or non-human primates was not associated with seroreactivity. CONCLUSIONS: This analysis suggests that some zoonotic exposures that have been linked to EVD outbreaks can also be associated with EBOV GP seroreactivity in the absence of diagnosed EVD. Future investigations should seek to clarify the relationships between zoonotic exposures, seroreactivity, asymptomatic infection, and EVD.


Subject(s)
Antibodies, Viral/blood , Ebolavirus/immunology , Glycoproteins/blood , Hemorrhagic Fever, Ebola/epidemiology , Adult , Animals , Democratic Republic of the Congo/epidemiology , Disease Outbreaks , Enzyme-Linked Immunosorbent Assay , Female , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/immunology , Humans , Logistic Models , Male , Middle Aged , Primates , Risk Factors , Seroepidemiologic Studies , Zoonoses
4.
Nat Commun ; 12(1): 2633, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976149

ABSTRACT

Ebola virus (EBOV) glycoprotein (GP) can be recognized by neutralizing antibodies (NAbs) and is the main target for vaccine design. Here, we first investigate the contribution of the stalk and heptad repeat 1-C (HR1C) regions to GP metastability. Specific stalk and HR1C modifications in a mucin-deleted form (GPΔmuc) increase trimer yield, whereas alterations of HR1C exert a more complex effect on thermostability. Crystal structures are determined to validate two rationally designed GPΔmuc trimers in their unliganded state. We then display a modified GPΔmuc trimer on reengineered protein nanoparticles that encapsulate a layer of locking domains (LD) and a cluster of helper T-cell epitopes. In mice and rabbits, GP trimers and nanoparticles elicit cross-ebolavirus NAbs, as well as non-NAbs that enhance pseudovirus infection. Repertoire sequencing reveals quantitative profiles of vaccine-induced B-cell responses. This study demonstrates a promising vaccine strategy for filoviruses, such as EBOV, based on GP stabilization and nanoparticle display.


Subject(s)
Ebola Vaccines/administration & dosage , Glycoproteins/administration & dosage , Hemorrhagic Fever, Ebola/therapy , Viral Proteins/administration & dosage , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antigens, Viral/administration & dosage , Antigens, Viral/genetics , Antigens, Viral/immunology , Antigens, Viral/ultrastructure , B-Lymphocytes/immunology , Crystallography, X-Ray , Disease Models, Animal , Ebola Vaccines/genetics , Ebola Vaccines/immunology , Ebolavirus/genetics , Ebolavirus/immunology , Epitopes, T-Lymphocyte/administration & dosage , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/ultrastructure , Female , Glycoproteins/genetics , Glycoproteins/immunology , Glycoproteins/ultrastructure , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Humans , Mice , Nanoparticles/chemistry , Protein Domains/genetics , Protein Domains/immunology , Protein Engineering , Protein Multimerization/genetics , Protein Multimerization/immunology , Protein Stability , Rabbits , T-Lymphocytes, Helper-Inducer/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Viral Proteins/genetics , Viral Proteins/immunology , Viral Proteins/ultrastructure
5.
Am J Trop Med Hyg ; 104(5): 1751-1754, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33782211

ABSTRACT

Gamma irradiation (GI) is included in the CDC guidance on inactivation procedures to render a group of select agents and toxins nonviable. The Ebola virus falls within this group because it potentially poses a severe threat to public health and safety. To evaluate the impact of GI at a target dose of 50 kGy on neutralizing antibody titers induced by the rVSVΔG-ZEBOV-GP vaccine (V920), we constructed a panel of 48 paired human serum samples (GI-treated versus non-GI-treated) from healthy participants selected from a phase 3 study of V920 (study V920-012; NCT02503202). Neutralizing antibody titers were determined using a validated plaque-reduction neutralization test. GI of sera from V920 recipients was associated with approximately 20% reduction in postvaccination neutralizing antibody titers. GI was not associated with any change in pre-vaccination neutralizing antibody titers.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Ebola Vaccines/administration & dosage , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/prevention & control , Immune Sera/radiation effects , Antibodies, Neutralizing/analysis , Ebola Vaccines/chemical synthesis , Ebolavirus/pathogenicity , Healthy Volunteers , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Humans , Immune Sera/chemistry , Immunogenicity, Vaccine , Neutralization Tests , Prospective Studies , Vaccination/methods , Vesiculovirus/chemistry , Vesiculovirus/immunology , Viral Envelope Proteins/immunology
6.
Nature ; 590(7846): 468-472, 2021 02.
Article in English | MEDLINE | ID: mdl-33505020

ABSTRACT

Neutralizing antibody function provides a foundation for the efficacy of vaccines and therapies1-3. Here, using a robust in vitro Ebola virus (EBOV) pseudo-particle infection assay and a well-defined set of solid-phase assays, we describe a wide spectrum of antibody responses in a cohort of healthy survivors of the Sierra Leone EBOV outbreak of 2013-2016. Pseudo-particle virus-neutralizing antibodies correlated with total anti-EBOV reactivity and neutralizing antibodies against live EBOV. Variant EBOV glycoproteins (1995 and 2014 strains) were similarly neutralized. During longitudinal follow-up, antibody responses fluctuated in a 'decay-stimulation-decay' pattern that suggests de novo restimulation by EBOV antigens after recovery. A pharmacodynamic model of antibody reactivity identified a decay half-life of 77-100 days and a doubling time of 46-86 days in a high proportion of survivors. The highest antibody reactivity was observed around 200 days after an individual had recovered. The model suggests that EBOV antibody reactivity declines over 0.5-2 years after recovery. In a high proportion of healthy survivors, antibody responses undergo rapid restimulation. Vigilant follow-up of survivors and possible elective de novo antigenic stimulation by vaccine immunization should be considered in order to prevent EBOV viral recrudescence in recovering individuals and thereby to mitigate the potential risk of reseeding an outbreak.


Subject(s)
Antibodies, Viral/blood , Antibodies, Viral/immunology , Convalescence , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Survivors , Adolescent , Adult , Africa, Western/epidemiology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Cohort Studies , Female , Half-Life , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Humans , Male , Middle Aged , Neutralization Tests , Time Factors , Viremia/blood , Viremia/immunology , Young Adult
7.
J Virol ; 95(6)2021 02 24.
Article in English | MEDLINE | ID: mdl-33408171

ABSTRACT

Infection with Zaire ebolavirus (EBOV), a member of the Filoviridae family, causes a disease characterized by high levels of viremia, aberrant inflammation, coagulopathy, and lymphopenia. EBOV initially replicates in lymphoid tissues and disseminates via dendritic cells (DCs) and monocytes to liver, spleen, adrenal gland, and other secondary organs. EBOV protein VP35 is a critical immune evasion factor that inhibits type I interferon signaling and DC maturation. Nonhuman primates (NHPs) immunized with a high dose (5 × 105 PFU) of recombinant EBOV containing a mutated VP35 (VP35m) are protected from challenge with wild-type EBOV (wtEBOV). This protection is accompanied by a transcriptional response in the peripheral blood reflecting a regulated innate immune response and a robust induction of adaptive immune genes. However, the host transcriptional response to VP35m in lymphoid tissues has not been evaluated. Therefore, we conducted a transcriptional analysis of axillary and inguinal lymph nodes and spleen tissues of NHPs infected with a low dose (2 × 104 PFU) of VP35m and then back-challenged with a lethal dose of wtEBOV. VP35m induced early transcriptional responses in lymphoid tissues that are distinct from those observed in wtEBOV challenge. Specifically, we detected robust antiviral innate and adaptive responses and fewer transcriptional changes in genes with roles in angiogenesis, apoptosis, and inflammation. Two of three macaques survived wtEBOV back-challenge, with only the nonsurvivor displaying a transcriptional response reflecting Ebola virus disease. These data suggest that VP35 is a key modulator of early host responses in lymphoid tissues, thereby regulating disease progression and severity following EBOV challenge.IMPORTANCE Zaire Ebola virus (EBOV) infection causes a severe and often fatal disease characterized by inflammation, coagulation defects, and organ failure driven by a defective host immune response. Lymphoid tissues are key sites of EBOV pathogenesis and the generation of an effective immune response to infection. A recent study demonstrated that infection with an EBOV encoding a mutant VP35, a viral protein that antagonizes host immunity, can protect nonhuman primates (NHPs) against lethal EBOV challenge. However, no studies have examined the response to this mutant EBOV in lymphoid tissues. Here, we characterize gene expression in lymphoid tissues from NHPs challenged with the mutant EBOV and subsequently with wild-type EBOV to identify signatures of a protective host response. Our findings are critical for elucidating viral pathogenesis, mechanisms of host antagonism, and the role of lymphoid organs in protective responses to EBOV to improve the development of antivirals and vaccines against EBOV.


Subject(s)
Ebolavirus/pathogenicity , Hemorrhagic Fever, Ebola/immunology , Lymphoid Tissue/immunology , Viral Regulatory and Accessory Proteins/immunology , Adaptive Immunity , Animals , Antiviral Agents/blood , Ebolavirus/genetics , Ebolavirus/immunology , Gene Expression Regulation/immunology , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/virology , Lymphoid Tissue/virology , Macaca fascicularis , Mutation , Spleen/immunology , Transcriptome , Viral Regulatory and Accessory Proteins/genetics
8.
Lancet Infect Dis ; 21(4): 507-516, 2021 04.
Article in English | MEDLINE | ID: mdl-33065039

ABSTRACT

BACKGROUND: The 2013-16 Ebola virus disease epidemic in west Africa caused international alarm due to its rapid and extensive spread resulting in a significant death toll and social unrest within the affected region. The large number of cases provided an opportunity to study the long-term kinetics of Zaire ebolavirus-specific immune response of survivors in addition to known contacts of those infected with the virus. METHODS: In this observational cohort study, we worked with leaders of Ebola virus disease survivor associations in two regions of Guinea, Guéckédou and Coyah, to recruit survivors of Ebola virus disease, contacts from households of individuals known to have had Ebola virus disease, and individuals who were not knowingly associated with infected individuals or had not had Ebola virus disease symptoms to serve as negative controls. We did Zaire ebolavirus glycoprotein-specific T cell analysis on peripheral blood mononuclear cells (PBMCs) on location in Guinea and transported plasma and PBMCs back to Europe for antibody quantification by ELISA, functional neutralising antibody analysis using live Zaire ebolavirus, and T cell phenotype studies. We report on the longitudinal cellular and humoral response among Ebola virus disease survivors and highlight potentially paucisymptomatic infection. FINDINGS: We recruited 117 survivors of Ebola virus disease, 66 contacts, and 23 negative controls. The mean neutralising antibody titre among the Ebola virus disease survivors 3-14 months after infection was 1/174 (95% CI 1/136-1/223). Individual results varied greatly from 1/10 to more than 1/1000 but were on average ten times greater than that induced after 1 month by single dose Ebola virus vaccines. Following reactivation with glycoprotein peptide, the mean T cell responses among 116 Ebola virus disease survivors as measured by ELISpot was 305 spot-forming units (95% CI 257-353). The dominant CD8+ polyfunctional T cell phenotype, as measured among 53 Ebola virus disease survivors, was interferon γ+, tumour necrosis factor+, interleukin-2-, and the mean response was 0·046% of total CD8+ T cells (95% CI 0·021-0·071). Additionally, both neutralising antibody and T cell responses were detected in six (9%) of 66 Ebola virus disease contacts. We also noted that four (3%) of 117 individuals with Ebola virus disease infections did not have circulating Ebola virus-specific antibodies 3 months after infection. INTERPRETATION: The continuous high titre of neutralising antibodies and increased T cell response might support the concept of long-term protective immunity in survivors. The existence of antibody and T cell responses in contacts of individuals with Ebola virus disease adds further evidence to the existence of sub-clinical Ebola virus infection. FUNDING: US Food & Drug Administration, Horizon 2020 EU EVIDENT, Wellcome, UK Department for International Development. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Subject(s)
Antibodies, Viral/blood , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Survivors/statistics & numerical data , T-Lymphocytes/immunology , Adolescent , Adult , Antibodies, Viral/immunology , Antibodies, Viral/isolation & purification , Child , Child, Preschool , Ebolavirus/pathogenicity , Epidemics , Female , Guinea/epidemiology , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/transmission , Hemorrhagic Fever, Ebola/virology , Humans , Immunity, Cellular , Immunity, Humoral , Infant , Infant, Newborn , Longitudinal Studies , Male , Middle Aged , Time Factors , Young Adult
9.
Lancet Child Adolesc Health ; 4(12): 884-888, 2020 12.
Article in English | MEDLINE | ID: mdl-33217357

ABSTRACT

BACKGROUND: Few fetuses survive childbirth when the mother is positive for Ebola virus, with almost all being miscarried or stillborn, or dying shortly after birth. Before 2019, only two infants had been reported surviving past 28 days, of whom one tested positive for Ebola virus and subsequently received experimental therapies. Little is understood regarding the care of surviving neonates born to Ebola virus-positive mothers in the postnatal period and how novel anti-Ebola virus therapies might affect neonatal outcomes. METHODS: In this case series, we report on two neonates liveborn during the 2018-20 North Kivu Ebola epidemic in the Democratic Republic of the Congo who, along with their Ebola virus-positive mothers, received investigational monoclonal antibody treatment (mAB114 or REGN-EB3) as part of a randomised controlled trial (NCT03719586). FINDINGS: Both infants were born Ebola-negative and progressed well while in the Ebola Treatment Centre. Neither neonate developed evidence of Ebola virus disease during the course of the admission, and both were Ebola-negative at 21 days and remained healthy at discharge. INTERPRETATION: To our knowledge these neonates are the first documented as Ebola virus-negative at birth after being born to Ebola virus-positive mothers, and only the third and fourth neonates ever documented to have survived into infancy. Although no conclusions can be drawn from this small case series, and further research is required to investigate the neonatal effects of antibody therapies, these cases warrant review regarding whether post-delivery antibody therapy should be considered for all liveborn neonates of Ebola virus-positive mothers. In the context of a low resource setting, where survival of low-birthweight infants is poor, these cases also highlight the importance of adequate neonatal care. FUNDING: None.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Hemorrhagic Fever, Ebola/drug therapy , Immunologic Factors/therapeutic use , Infectious Disease Transmission, Vertical/prevention & control , Pregnancy Complications, Infectious/drug therapy , Adolescent , Democratic Republic of the Congo , Ebolavirus/isolation & purification , Female , Hemorrhagic Fever, Ebola/blood , Humans , Infant , Infant, Newborn , Live Birth , Maternal Death , Pregnancy , Pregnancy Complications, Infectious/blood , Randomized Controlled Trials as Topic , Young Adult
10.
Virol J ; 17(1): 188, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33243278

ABSTRACT

BACKGROUND: Lassa fever and Ebola are characterized by non-specific initial presentations that can progress to severe multisystem illnesses with high fatality rates. Samples from additional subjects are examined to extend and corroborate biomarkers with prognostic value for these diseases. METHODS: Liquid Chromatography Mass Spectrometry metabolomics was used to identify and confirm metabolites disrupted in the blood of Lassa fever and Ebola patients. Authenticated standards are used to confirm the identify of key metabolites. RESULTS: We confirm prior results by other investigators that the amino acid L-threonine is elevated during Ebola virus infection. L-Threonine is also elevated during Lassa virus infection. We also confirmed that platelet-activating factor (PAF) and molecules with PAF moiety are reduced in the blood of patients with fatal Lassa fever. Similar changes in PAF and PAF-like molecules were not observed in the blood of Ebola patients. CONCLUSIONS: Metabolomics may provide tools to identify pathways that are differentially affected during viral hemorrhagic fevers and guide development of diagnostics to monitor and predict outcome.


Subject(s)
Hemorrhagic Fever, Ebola/diagnosis , Lassa Fever/diagnosis , Threonine/blood , Adolescent , Adult , Biomarkers/blood , Child , Child, Preschool , Chromatography, Liquid/methods , Cohort Studies , Female , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/metabolism , Humans , Infant , Lassa Fever/blood , Lassa Fever/metabolism , Male , Mass Spectrometry/methods , Metabolomics , Middle Aged , Threonine/genetics , Young Adult
11.
PLoS Negl Trop Dis ; 14(11): e0008872, 2020 11.
Article in English | MEDLINE | ID: mdl-33253169

ABSTRACT

South Sudan implemented Ebola virus disease preparedness interventions aiming at preventing and rapidly containing any importation of the virus from the Democratic Republic of Congo starting from August 2018. One of these interventions was a surveillance system which included an Ebola alert management system. This study analyzed the performance of this system. A descriptive cross-sectional study of the Ebola virus disease alerts which were reported in South Sudan from August 2018 to November 2019 was conducted using both quantitative and qualitative methods. As of 30 November 2019, a total of 107 alerts had been detected in the country out of which 51 (47.7%) met the case definition and were investigated with blood samples collected for laboratory confirmation. Most (81%) of the investigated alerts were South Sudanese nationals. The alerts were identified by health workers (53.1%) at health facilities, at the community (20.4%) and by screeners at the points of entry (12.2%). Most of the investigated alerts were detected from the high-risk states of Gbudwe (46.9%), Jubek (16.3%) and Torit (10.2%). The investigated alerts commonly presented with fever, bleeding, headache and vomiting. The median timeliness for deployment of Rapid Response Team was less than one day and significantly different between the 6-month time periods (K-W = 7.7567; df = 2; p = 0.0024) from 2018 to 2019. Strengths of the alert management system included existence of a dedicated national alert hotline, case definition for alerts and rapid response teams while the weaknesses were occasional inability to access the alert toll-free hotline and lack of transport for deployment of the rapid response teams which often constrain quick response. This study demonstrates that the Ebola virus disease alert management system in South Sudan was fully functional despite the associated challenges and provides evidence to further improve Ebola preparedness in the country.


Subject(s)
Disease Outbreaks/prevention & control , Hemorrhagic Fever, Ebola/diagnosis , Hemorrhagic Fever, Ebola/prevention & control , Adolescent , Adult , Cross-Sectional Studies , Ebolavirus/isolation & purification , Female , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/epidemiology , Hospital Rapid Response Team/organization & administration , Hospital Rapid Response Team/statistics & numerical data , Hotlines , Humans , Male , Population Surveillance/methods , South Sudan/epidemiology
12.
Infect Control Hosp Epidemiol ; 41(4): 385-390, 2020 04.
Article in English | MEDLINE | ID: mdl-32933606

ABSTRACT

OBJECTIVE: Healthcare personnel (HCP) were recruited to provide serum samples, which were tested for antibodies against Ebola or Lassa virus to evaluate for asymptomatic seroconversion. SETTING: From 2014 to 2016, 4 patients with Ebola virus disease (EVD) and 1 patient with Lassa fever (LF) were treated in the Serious Communicable Diseases Unit (SCDU) at Emory University Hospital. Strict infection control and clinical biosafety practices were implemented to prevent nosocomial transmission of EVD or LF to HCP. PARTICIPANTS: All personnel who entered the SCDU who were required to measure their temperatures and complete a symptom questionnaire twice daily were eligible. RESULTS: No employee developed symptomatic EVD or LF. EVD and LF antibody studies were performed on sera samples from 42 HCP. The 6 participants who had received investigational vaccination with a chimpanzee adenovirus type 3 vectored Ebola glycoprotein vaccine had high antibody titers to Ebola glycoprotein, but none had a response to Ebola nucleoprotein or VP40, or a response to LF antigens. CONCLUSIONS: Patients infected with filoviruses and arenaviruses can be managed successfully without causing occupation-related symptomatic or asymptomatic infections. Meticulous attention to infection control and clinical biosafety practices by highly motivated, trained staff is critical to the safe care of patients with an infection from a special pathogen.


Subject(s)
Antibodies, Viral/blood , Cross Infection/blood , Cross Infection/epidemiology , Hemorrhagic Fever, Ebola/blood , Lassa Fever/blood , Academic Medical Centers , Adult , Cross Infection/prevention & control , Female , Georgia/epidemiology , Health Personnel , Hemorrhagic Fever, Ebola/prevention & control , Humans , Infection Control/methods , Lassa Fever/prevention & control , Lassa virus , Male , Middle Aged , United States , Viral Vaccines/immunology
13.
PLoS Negl Trop Dis ; 14(7): e0008496, 2020 07.
Article in English | MEDLINE | ID: mdl-32735587

ABSTRACT

BACKGROUND: The unprecedented 2013/16 outbreak of Zaire ebolavirus (Ebola virus) in West Africa has highighted the need for rapid, high-throughput and POC diagnostic assays to enable timely detection and appropriate triaging of Ebola Virus Disease (EVD) patients. Ebola virus is highly infectious and prompt diagnosis and triage is crucial in preventing further spread within community and healthcare settings. Moreover, due to the ecology of Ebola virus it is important that newly developed diagnostic assays are suitable for use in both the healthcare environment and low resource rural locations. METHODOLOGY/PRINCIPLE FINDINGS: A LAMP assay was successfully developed with three detection formats; a real-time intercalating dye-based assay, a real-time probe-based assay to enable multiplexing and an end-point colourimetric assay to simplify interpretation for the field. All assay formats were sensitive and specific, detecting a range of Ebola virus strains isolated in 1976-2014; with Probit analysis predicting limits of detection of 243, 290 and 75 copies/reaction respectively and no cross-detection of related strains or other viral haemorrhagic fevers (VHF's). The assays are rapid, (as fast as 5-7.25 mins for real-time formats) and robust, detecting Ebola virus RNA in presence of minimally diluted bodily fluids. Moreover, when tested on patient samples from the 2013/16 outbreak, there were no false positives and 93-96% of all new case positives were detected, with only a failure to detect very low copy number samples. CONCLUSION/SIGNIFICANCE: These are a set of robust and adaptable diagnostic solutions, which are fast, easy-to-perform-and-interpret and are suitable for use on a range of platforms including portable low-power devices. They can be readily transferred to field-laboratory settings, with no specific equipment needs and are therefore ideally placed for use in locations with limited resources.


Subject(s)
Ebolavirus/isolation & purification , Hemorrhagic Fever, Ebola/diagnosis , Hemorrhagic Fever, Ebola/virology , Nucleic Acid Amplification Techniques/methods , Disease Outbreaks , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/epidemiology , Humans , RNA, Viral , Sensitivity and Specificity , Sierra Leone/epidemiology
14.
BMC Infect Dis ; 20(1): 461, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32611400

ABSTRACT

BACKGROUND: Uganda has experienced seven Ebola Virus Disease (EVD) outbreaks and four Marburg Virus Disease (MVD) outbreaks between 2000 and 2019. We investigated the seroprevalence and risk factors for Marburg virus and ebolaviruses in gold mining communities around Kitaka gold mine in Western Uganda and compared them to non-mining communities in Central Uganda. METHODS: A questionnaire was administered and human blood samples were collected from three exposure groups in Western Uganda (gold miners, household members of miners, non-miners living within 50 km of Kitaka mine). The unexposed controls group sampled was community members in Central Uganda far away from any gold mining activity which we considered as low-risk for filovirus infection. ELISA serology was used to analyse samples, detecting IgG antibodies against Marburg virus and ebolaviruses (filoviruses). Data were analysed in STATA software using risk ratios and odds ratios. RESULTS: Miners in western Uganda were 5.4 times more likely to be filovirus seropositive compared to the control group in central Uganda (RR = 5.4; 95% CI 1.5-19.7) whereas people living in high-risk areas in Ibanda and Kamwenge districts were 3.6 more likely to be seropositive compared to control group in Luweeero district (RR = 3.6; 95% CI 1.1-12.2). Among all participants, filovirus seropositivity was 2.6% (19/724) of which 2.3% (17/724) were reactive to Sudan virus only and 0.1% (1/724) to Marburg virus. One individual seropositive for Sudan virus also had IgG antibodies reactive to Bundibugyo virus. The risk factors for filovirus seropositivity identified included mining (AOR = 3.4; 95% CI 1.3-8.5), male sex (AOR = 3.1; 95% CI 1.01-9.5), going inside mines (AOR = 3.1; 95% CI 1.2-8.2), cleaning corpses (AOR = 3.1; 95% CI 1.04-9.1) and contact with suspect filovirus cases (AOR = 3.9, 95% CI 1.04-14.5). CONCLUSIONS: These findings indicate that filovirus outbreaks may go undetected in Uganda and people involved in artisan gold mining are more likely to be exposed to infection with either Marburg virus or ebolaviruses, likely due to increased risk of exposure to bats. This calls for active surveillance in known high-risk areas for early detection and response to prevent filovirus epidemics.


Subject(s)
Disease Outbreaks , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/diagnosis , Hemorrhagic Fever, Ebola/epidemiology , Marburg Virus Disease/diagnosis , Marburg Virus Disease/epidemiology , Marburgvirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Child , Child, Preschool , Chiroptera/virology , Enzyme-Linked Immunosorbent Assay , Female , Hemorrhagic Fever, Ebola/blood , Humans , Male , Marburg Virus Disease/blood , Middle Aged , Miners , Retrospective Studies , Seroepidemiologic Studies , Uganda/epidemiology , Young Adult
15.
Transfusion ; 60(5): 1024-1031, 2020 05.
Article in English | MEDLINE | ID: mdl-32129478

ABSTRACT

BACKGROUND: In 2014, passive immunization by transfusion of Ebola convalescent plasma (ECP) was considered for treating patients with acute Ebola virus disease (EVD). Early Ebola virus (EBOV) seroconversion confers a survival advantage in natural infection, hence transfusion of ECP plasma with high levels of neutralizing EBOV antibodies is a potential passive immune therapy. Techniques to reduce the risk of other transfusion-transmitted infections (TTIs) are warranted as recent ECP survivors are ineligible as routine blood donors. As part of an ongoing clinical trial to evaluate the safety and effectiveness of ECP, the impact of amotosalen/UVA pathogen reduction technology (PRT) on EBOV antibody characteristics was examined. STUDY DESIGN AND METHODS: Serum and plasma samples were collected from EVD-recovered subjects at multiple timepoints and evaluated by ELISA for antibodies to recombinant EBOV glycoprotein (GP) and irradiated whole EBOV antigen, as well as for EBOV microneutralization, classic plaque reduction neutralization test (PRNT) and EBOV pseudovirion neutralization assay (PsVNA) activity. RESULTS: Six subjects donated 40 individual ECP units. Substantial antibody titers and neutralizing activity results were demonstrated but were generally lower for the ACD plasma samples compared to the serum samples. Anti-EBOV titers by all assays remained essentially unchanged after PRT. CONCLUSION: Treatment of ECP with PRT to reduce the risk of TTI did not significantly reduce EBOV IgG antibody titers or neutralizing activity. Although ECP was used in the treatment of repatriated patients, no PRT units from this study were transfused to EVD patients. This inventory of PRT-treated ECP is currently available for future clinical evaluation.


Subject(s)
Antibodies, Neutralizing/analysis , Blood Donors , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/blood , Immunity, Active , Plasma/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/analysis , Antibodies, Viral/blood , Antibodies, Viral/therapeutic use , Chlorocebus aethiops , Convalescence , Ficusin/pharmacology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/prevention & control , Humans , Immunity, Active/physiology , Immunization, Passive/methods , Neutralization Tests , Plasma/drug effects , Seroconversion/physiology , United States , Vero Cells , Viral Load/drug effects , Viral Load/immunology
16.
Emerg Infect Dis ; 26(2): 229-237, 2020 02.
Article in English | MEDLINE | ID: mdl-31829919

ABSTRACT

An association between malaria and risk for death among patients with Ebola virus disease has suggested within-host interactions between Plasmodium falciparum parasites and Ebola virus. To determine whether such an interaction might also influence the probability of acquiring either infection, we used a large snapshot surveillance study from rural Gabon to test if past exposure to Ebola virus is associated with current infection with Plasmodium spp. during nonepidemic conditions. We found a strong positive association, on population and individual levels, between seropositivity for antibodies against Ebola virus and the presence of Plasmodium parasites in the blood. According to a multiple regression model accounting for other key variables, antibodies against Ebola virus emerged as the strongest individual-level risk factor for acquiring malaria. Our results suggest that within-host interactions between malaria parasites and Ebola virus may underlie epidemiologic associations.


Subject(s)
Ebolavirus/isolation & purification , Hemorrhagic Fever, Ebola/complications , Malaria, Falciparum/epidemiology , Plasmodium falciparum/isolation & purification , Adolescent , Adult , Ebolavirus/immunology , Female , Gabon/epidemiology , Hemorrhagic Fever, Ebola/blood , Host-Parasite Interactions , Humans , Malaria, Falciparum/blood , Malaria, Falciparum/complications , Malaria, Falciparum/mortality , Male , Middle Aged , Plasmodium falciparum/immunology , Risk Factors , Rural Population , Surveys and Questionnaires , Young Adult
17.
EBioMedicine ; 49: 223-231, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31631035

ABSTRACT

BACKGROUND: Ebola virus (EBOV), variant Makona, was the causative agent of the 2013-2016 West African epidemic responsible for almost 30,000 human infections and over 11,000 fatalities. During the epidemic, the development of several experimental vaccines was accelerated through human clinical trials. One of them, the vesicular stomatitis virus (VSV)-based vaccine VSV-EBOV, showed promising efficacy in a phase 3 clinical trial in Guinea and is currently used in the ongoing EBOV outbreak in the northeastern part of the Democratic Republic of the Congo (DRC). This vaccine expresses the EBOV-Kikwit glycoprotein from the 1995 outbreak as the immunogen. METHODS: Here we generated a VSV-based vaccine expressing the contemporary EBOV-Makona glycoprotein. We characterized the vaccine in tissue culture and analyzed vaccine efficacy in the cynomolgus macaque model. Subsequently, we determined the dose-dependent protective efficacy in nonhuman primates against lethal EBOV challenge. FINDINGS: We observed complete protection from disease with VSV-EBOV doses ranging from 1 × 107 to 1 × 101 plaque-forming units. Some protected animals receiving lower vaccine doses developed temporary low-level EBOV viremia. Control animals developed classical EBOV disease and reached euthanasia criteria within a week after challenge. This study demonstrates that very low doses of VSV-EBOV uniformly protect macaques against lethal EBOV challenge. INTERPRETATION: Our study provides missing pre-clinical data supporting the use of reduced VSV-EBOV vaccine doses without decreasing protective efficacy and at the same time increase vaccine safety and availability - two critical concerns in public health response. FUNDING: Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health.


Subject(s)
Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/prevention & control , Vaccination , Vesiculovirus/immunology , Animals , Cytokines/metabolism , Dose-Response Relationship, Immunologic , Female , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/virology , Immunity, Humoral , Macaca fascicularis , Male , Survival Analysis
18.
Viruses ; 11(7)2019 07 15.
Article in English | MEDLINE | ID: mdl-31311112

ABSTRACT

Knowledge on haemostatic changes in humans infected with Ebola virus is limited due to safety concerns and access to patient samples. Ethical approval was obtained to collect plasma samples from patients in Sierra Leone infected with Ebola virus over time and samples were analysed for clotting time, fibrinogen, and D-dimer levels. Plasma from healthy volunteers was also collected by two methods to determine effect of centrifugation on test results as blood collected in Sierra Leone was not centrifuged. Collecting plasma without centrifugation only affected D-dimer values. Patients with Ebola virus disease had higher PT and APTT and D-dimer values than healthy humans with plasma collected in the same manner. Fibrinogen levels in patients with Ebola virus disease were normal or lower than values measured in healthy people. Clotting times and D-dimer levels were elevated during infection with Ebola virus but return to normal over time in patients that survived and therefore could be considered prognostic. Informative data can be obtained from plasma collected without centrifugation which could improve patient monitoring in hazardous environments.


Subject(s)
Blood Coagulation , Fibrin Fibrinogen Degradation Products/analysis , Hemorrhagic Fever, Ebola/blood , Adult , Ebolavirus/pathogenicity , Female , Humans , Male , Middle Aged , Plasma , Prothrombin Time , Sierra Leone
19.
Viruses ; 11(8)2019 07 24.
Article in English | MEDLINE | ID: mdl-31344850

ABSTRACT

Filovirus serological diagnosis and epidemiological investigations are hampered due to the unavailability of validated immunoassays. Diagnostic performance of three indirect enzyme-linked immunosorbent assays (I-ELISA) was evaluated for the detection of IgG antibody to Ebola virus (EBOV) in human sera. One I-ELISA was based on a whole EBOV antigen (WAg) and two utilized recombinant nucleocapsid (NP) and glycoproteins (GP), respectively. Validation data sets derived from individual sera collected in South Africa (SA), representing an EBOV non-endemic country, and from sera collected during an Ebola disease (EBOD) outbreak in Sierra Leone (SL), were categorized according to the compounded results of the three I-ELISAs and real time reverse-transcription polymerase chain reaction (RT-PCR). At the cut-off values selected at 95% accuracy level by the two-graph receiver operating characteristic analysis, specificity in the SA EBOV negative serum panel (n = 273) ranged from 98.17% (GP ELISA) to 99.27% (WAg ELISA). Diagnostic specificity in the SL EBOV negative panel (n = 676) was 100% by the three ELISAs. The diagnostic sensitivity in 423 RT-PCR confirmed EBOD patients was dependent on the time when the serum was collected after onset of disease. It significantly increased 2 weeks post-onset, reaching 100% sensitivity by WAg and NP and 98.1% by GP I-ELISA.


Subject(s)
Antibodies, Viral/blood , Enzyme-Linked Immunosorbent Assay , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/diagnosis , Immunoglobulin G/blood , Antigens, Viral/immunology , Disease Outbreaks , Ebolavirus , Glycoproteins/immunology , Humans , Nucleocapsid Proteins/immunology , Sensitivity and Specificity , Sierra Leone , South Africa
20.
Emerg Infect Dis ; 25(5): 911-918, 2019 05.
Article in English | MEDLINE | ID: mdl-31002071

ABSTRACT

We conducted a serologic survey of 2,430 serum samples collected during 1997-2012 for various studies to determine the prevalence of the hemorrhagic fever virus Ebola virus (EBOV) in equatorial Africa. We screened serum samples for neutralizing antibodies by using a pseudotype microneutralization assay and a newly developed luciferase immunoprecipitation system assay. Specimens seroreactive for EBOV were confirmed by using an ELISA. Our results suggest a serologic prevalence of 2%-3.5% in the Republic of the Congo and the Democratic Republic of the Congo, which have reported outbreaks of infection with EBOV. In addition we detected a seroprevalence of 1.3% in southern Cameroon, which indicated a low risk for exposure in this region.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola/epidemiology , Africa, Central/epidemiology , Antibodies, Viral/blood , Ebolavirus/immunology , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Hemorrhagic Fever, Ebola/blood , Humans , Immunoprecipitation , Nucleoproteins/immunology , Seroepidemiologic Studies , Viral Core Proteins/immunology , Viral Envelope Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...